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A simple method  for  obtaining M C S C F  orbitals and CI natural  orbitals 
adapted  to degenerate point  groups, with full symmetry and equivalence 
restrictions, is described. Among  several advantages accruing f rom this method 
are the ability to per form atomic SCF calculations on states for  which the 
SCF energy expression cannot  be written in terms of  Cou lomb and exchange 
integrals over real orbitals, and the generat ion o f  symmetry-adapted  atomic 
natural  orbitals for use in a recently p roposed  method  for basis set contraction.  

Key words: Symmetry and equivalence - -  Density matrices - -  Natural  orbitals 
- -  M C S C F  - -  Group  theory 

1. Introduction 

For an a tom or molecule with point  group ~, a set o f  functions (such as atomic 
or molecular  orbitals) is said to be symmetry adapted if each funct ion is a basis 
funct ion for an irreducible representat ion o f  ~, and the set is said to display 
equivalence if ~i full set o f  par tner  functions is available for each basis function. 
In  general, for  an a tomic or molecular  state that t ransforms according to a 
degenerate representat ion o f  ~, an unrestricted SCF or M C S C F  calculation on 
one componen t  o f  the state will not  yield orbitals which are symmetry  adapted 
or  equivalent. For  example, SCF optimizat ion o f  the fluorine a tom configuration 
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will produce a 2pz orbital with a different radial function (inequivalent) from 2px 
and 2p~,. In addition, i fa  spin unrestricted approach is used, the orbitals associated 
with c~ or/3 spin will also differ. An MCSCF optimization of a 2D state using 
the two configurations s2d and sd 2 will produce optimum orbitals which are of 
neither pure s nor pure d type. Constraining the calculation so that orbitals with 
all the desired symmetry properties are obtained is referred to as imposing 
symmetry and equivalence restrictions. 

Roothaan and Bagus [ 1 ] implicitly imposed symmetry and equivalence restrictions 
[2] in their atomic SCF calculations by solving for only the radial part of the 
orbital; the angular part was determined by 0(3) symmetry. Even in calculations 
where each orbital is expanded in the full basis set, the simple structure of SCF 
energy expressions (or, equivalently, of SCF reduced density matrices) allows 
the restrictions to be imposed via the vector coupling coefficients used to average 
degenerate configurations - see Jackels and Davidson [3]. For example, in the 
F atom 2p case discussed above, an energy expression corresponding to an 
average of energy associated with the configurations having the 2px, 2py and 2pz 
orbitals successively singly occupied would be used. Jackels and Davidson also 
noted that if the a and /3 orbitals were averaged, symmetry and equivalence 
could be imposed in a spin unrestricted approach. In this way many atomic and 
molecular states can be treated at the SCF level using a molecular SCF program 
with little or no facilities for handling symmetry: any atomic term arising from 
occupations of the form stop ~ can be treated this way, for example. There are, 
however, states which cannot be treated in this way, such as those arising from 
certain d k occupations. The terms d 2 (3F),  d 3 (4F), d 7 (4F),  d 8 (3F), for instance, 
each yield average energy expressions which can be expressed in terms of 
Coulomb ([iiljj]) and exchange ([ijl/j]) integrals alone only when complex 
orbitals are used. In terms of real orbitals, the average energy expressions contain 
integrals of the general form [ijlkl], and such expressions cannot be handled by 
conventional SCF codes. Energy expressions which contain only Coulomb and 
exchange integrals over real orbitals can be obtained by averaging the F states 
above with the P states of the same spin from the same d occupation: it is actually 
vector coupling coefficients for these P / F  averages that are given by Poirier et 
al. in a recent compendium [4], although it is claimed that the coupling coefficients 
are for the F states. 

More complicated energy expressions can be handled by an MCSCF program. 
However, very few MCSCF (or CI) programs exploit more than D2h symmetry, 
and if only one component of, say, the d 2 3F state is optimized within D2h 
symmetry, the final MCSCF orbitals will be symmetry adapted within D2h but 
will not display atomic symmetry and equivalence. (It is relatively easy to eliminate 
the mixing of the s and d orbitals, although this will not make the five d orbitals 
equivalent.) Similarly, the natural orbitals from a CI calculation in D2h on such 
a state would again fail to show symmetry and equivalence. Such problems are 
not, of course, confined to atomic calculations, but arise in any treatment of a 
degenerate state within D2h or its subgroups. In molecular systems symmetry 
and equivalence restrictions could be imposed in the same manner as Roothaan 
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and Bagus used in their work on atoms, that is, a special code for each symmetry 
of interest could be developed. While this might be considered an elegant 
approach, it is impractical since it would lead to the problem of developing and 
supporting a large number of very complex codes. In the present work, we first 
show formally how symmetry and equivalence restrictions are imposed, and then 
describe how these can be implemented computationally. A simple example is 
given to illustrate the method. This approach to symmetry and equivalence 
restrictions is a very powerful one, and its implementation is a much simpler 
task than that of extending codes designed originally for D2h and its subgroups 
to include higher symmetries. The ability to impose symmetry and equivalence 
restrictions is of particular current importance in the construction of new atomic 
natural orbital (ANO) basis sets. 

2. Symmetry adapted natural orbitals and geminais 

The symmetry properties of density matrices and natural orbitals have been 
reviewed extensively by McWeeny and Kutzelnigg [5] and by Davidson [6], and 
we shall generally follow their treatment. The kernel of the electron density 
operator y(~-; r') (T denotes both spin and spatial coordinates) is given in terms 
of an orthonormal one-electron basis {~b} as 

v(~-; ~') = Y, 4,p(~)V~qr (1) 
Pq 

where 9% is an element of the density matrix. This is a Hermitian matrix and 
can be brought to diagonal form by a unitary transformation, yielding natural 
spin orbitals (NSOs) {X}: 

v(~; ~-') = 2 , ~ x ~ ( , ) x * ( ' / ) ,  (2) 
P 

where % is the occupation number of natural spin orbital Xp. The NSOs are of 
pure ce or/3 spin type if the Hamiltonian contains no spin-dependent operators 
[5]. That is, a given NSO can be written as a product of a spatial orbital 45p(r) 
(r denotes spatial coordinates) and a spin factor ~ or /3. However, it is not 
generally the case that a given #~p(r) will appear with both ce and/3 spin factors: 
the partner function (within the given irreducible representation of the spin 
group) of an NSO is generally not itself an NSO. This is, in effect, a loss of 
equivalence properties under the spin group for the NSO. Only in the case of 
zero total spin projection (Ms = 0) is equivalence obtained. This is obviously a 
nuisance, as different NSOs will be obtained from density matrices for different 
Ms values. It is therefore customary [5, 6] to define a spin-flee density matrix 
(denoted p) as the sum of the o~-spin and /3-spin blocks of y. It is this matrix 
which is normally computed as the "density matrix" in electronic structure codes, 
and its eigenvectors are termed natural orbitals (NOs). As will be seen, this 
spin-averaging is exactly analogous to imposing spatial symmetry and equivalence 
restrictions. 

The kernel of the spin-flee density operator can be written as 

p(r; r')= Y, ~p,(r)ppq~o(r')*. (3) 
Pq 
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It is convenient to assume that the set of orthonormal orbitals {q~} possess the 
desired symmetry and equivalence properties. (This is not a practical restriction, 
as some such set of orthonormal orbitals can always be generated straightfor- 
wardly, say, by diagonalizing the one-electron part of the Hamiltonian (h). See 
for example [7], where it is shown that it is also trivial to sort the eigenvectors 
of h by irreducible representations.) We denote by q~a a basis function for row 
a of irreducible representation /x; p is simply a counting index. Eq. (3) thus 
becomes 

fOp t,r)ppq' fOq tr ) , (3) 
Ixz" ab pq 

where p~,~b is a sub-block of p. What is now desired is to  obtain NOs with full 
symmetry and equivalence properties from p. Unfortunately, the eigenvectors of 
p will only display these properties when the wave function transforms according 
to a non-degenerate irreducible representation of cg [5, 6]. In other cases, it is 
necessary to project out pO that component of p that transforms according to 
the totally symmetric irreducible representation of ~, and use the eigenvectors 
of p as the NOs. These orbitals display full symmetry and equivalence properties 
and differ as little as possible (in a least-squares sense [5]) from the eigenvectors 
of p itself. The following projection approach, which is essentially that used by 
Davidson [6], is easily implemented computationally. 

The component of p which transforms as a basis function for row a of irreducible 
representation/z is obtained [6, 8] as 

p~a = g - I  ?ltx E D ~ b ( R ) * R p R - ' ,  R e ~, (4) 
R 

where g is the order of ~3 and D r ( R )  is one of a set of unitary irreducible 
representation matrices for/x, which is of dimension n,.  A set of basis functions 
for all rows of  irreducible representation ~ is obtained by choosing a linearly 
independent subset of the functions obtained using all possible values of index 
b in (4). For the totally symmetric irreducible representation we have 

pO = g- i  ~ RpR-1. (5) 
R 

It is simplest to project p block by block: for block (pO)~,,,~b we obtain 

(pO)u~,~b = g-1 ~ Rp~a..b R-1 = g-~ E E P"~'~d D ~ (  R )D~,d( R ) *" (6) 
R R cd 

But 

g- '  ~ D~(R)D~,d(R)* -1 = n~ ~.~3ab~cd, (7) 
R 

by the great orthogonality theorem [8]. Substituting (7) in (6) gives 

(po),~o,.b = ~ J o b n  . '  Y. p"~'"~ (8) 
c 

for the only non-vanishing blocks of pO. This is very simple to implement 
computationally: after identification of blocks of the density matrix by their 
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transformation properties under ~, the diagonal blocks are averaged within 
representations, while all off-diagonal blocks are discarded, pO can then be 
diagonalized, to give NO occupation numbers np and NOs &~: 

p ~  E Y E  ~~ "~  ' *  = np(b, (r)gJp ( r )  . (9) 
/* a p 

It is easily seen that projection of that component of 7 that transforms according 
to the totally symmetric irreducible representation of the spin group (together 
with a renormalization so that NO occupation numbers lie between zero and 
two) corresponds exactly to the spin averaging procedure described above. 

The above approach is sufficient to allow symmetry and equivalence restricted 
NOs to be generated from a given density matrix. However, in a general energy 
expression the second-order reduced density matrix will also appear, and it is 
therefore desirable, for the purposes of averaging energy expressions, to extend 
the above approach to the second-order reduced density matrix. The kernel of 
the second-order reduced density operator [5] is 

F ( T 1 ,  7"2; 7.1, 7 .~ )=  E ! * ! * ' Om(7.1)~p(7.2)Fm,pqO,(7.,) 0q(7.2). (10) 
mnpq 

Here, as in (1) above, {4'} is a set of orthogonal spin-orbitals, and F is the 
second-order reduced density matrix. Note that the indices on F have been 
ordered to correspond to those on two-electron integrals given in charge density 
notation. Again, in order to avoid obtaining different results for different Ms 
values it is usual to obtain a spin-free kernel P(r~, r2; #1, r'2) by averaging over 
spin blocks. Full details are given by McWeeny and Kutzelnigg: P and the 
associated reduced density matrix P 

P(r l ,  r2; rl,' r~)= Y. q~m(rl)q~p(r2)PmnpqCn(rl)' *@q(r2) , !  * (11) 
mnpq 

are the quantities computed in density matrix-driven MCSCF codes. 

In terms of the orthonormal symmetry-adapted basis {r introduced above 
Eq. (11) becomes 

P(rl  r2; rl, r'2)= E E E u . . . . . . . .  ~a~bKcad ~b, , , ,  *d,_,,, (12) , ! ~Orn [rl)q~p [r2)-r'rnnpq Pn  t r l )  Cq t r2)  , 
t~uKA abcd mnpq 

pO, the component of P that transforms according to the totally symmetric 
irreducible representation, is obtained by projection of symmetry blocks of P. 
For a given block we have 

g - 1  ~ RRP,~a~b,,cad g - l  R - 1  
R 

= g-~ Y. P E D~ , (R)D~k(R)Dbj (R)  Dd , (R)  . (13) 
ijkt ~ R d 

The factor in braces in (13) can be regarded as a product of elements of unitary 
reducible representations for the direct products /~| and v| The unitarity 
of these reducible representations gives 

D ~ (  R )D~k( R ) D~i( R )* D~,( R )* = n~lQKsp~|174 Soi, bjSck, dl. (14) 
R 
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Insertion of (14) into (13) yields the final symmetrization formula, however, it 
is obvious from inspection of (14) that the final form will be more complicated 
than for the first-order case (8). In the following section we will show how the 
symmetrization of P can be avoided in MCSCF calculations. If natural geminals 
with symmetry and equivalence restrictions were required [5], this step would 
have to be performed, of course. 

3. Illustration 

As a simple example of using Eq. (8) to obtain symmetry and equivalence 
restricted NOs from a CI wave function, we consider the excited 2E' state of 
planar CH3. The molecule has D3h symmetry with SCF occupation 

t2~ t 2 t  tt2~ t3 al zal  1a2 le  . (15) 

In a program w'hich handles only D2h and its subgroups, this system must be 
treated using C2~ symmetry. The two components of the 2E' state (15) in C2~ 
symmetry are 

2 2 2 1 la,2a~lb23a~lb~ (16) 2 A  1 

and 

2 B  1 2 2 2 2 1 la12all b23all bv (17) 

First, we note that if the orbitals have full D3h symmetry, a CI calculation which 
includes all single and double excitations from both (16) and (17) will yield the 
same energy for the ~A~ and 2B~ states. The first-order reduced density matrices 
from these two CI wave functions are given in Table 1. The two problems which 
prevent the eigenvectors of either of these density matrices displaying D3~, sym- 

e'e' metry are immediately apparent. First, density matrix elements such as p~'n x are 
not equal to p ~;~" in either matrix. Second, both matrices contain non-zero elements 

a~e' of the form p mn ~. It is straightforward to see that the projection procedure defined 
by Eq. (8) above eliminates both problems, and the same projected density matrix 
is obtained from both of the original matrices. At this stage it should be pointed 
out that in practical calculations it is important to ensure that phase relationships 
among degenerate orbitals are consistent. That is, applying the shift operator 

/x 
~ b ,  which generates a basis function for row a of irreducible representation/x 
from a basis function for row b, must yield 

~ .b .a (18) abqOp = A q ~ p  , 

where A is the same phase factor, for all values of the counting index p. Although 
this condition does not affect the computed energy, it is important in averaging 
to obtain symmetry and equivalence properties. 

It can also be seen from Table 1 that the same averaged density matrix as obtained 
by projection can be obtained by averaging the density matrices for the two 
components of the 2E' state, since the two wave functions and the corresponding 
density matrices are related by a shift operator. However, if the averaged density 



Symmetry and equivalence restrictions 69 

Table 1. The MO density matrix for the 2E~ and 2E;, components of the ZE' state ofCH 3 . The density 
matrix is blocked and labelled by C2o, the symmetry used in the CI calculation, while the orbitals 
are labelled using D3h , the symmetry of the molecule, and that used in the SCF calculation 

a~ a 1.987957 
1.987957 

e~ -0.003925 1.002602 
0.003925 1,988767 

a~ 0.003455 0.030386 
0.003456 -0.030386 

a~ 0.003404 -0.018831 
0.003404 0.018831 

e~ -0.009404 0.031865 
0.009404 -0.043940 

e;. 1.988767 
1.002602 

e~ -0.043940 0.005489 
0.031865 0.006198 

a~ 1.972070 
1.972070 

a~ -0.011975 0.020990 
-0.011975 0.020990 

a l  

bl 

b2 

0.010319 
0.010319 

-0.000721 0,005609 
-0.000721 0.005609 

0.000381 -0.001446 
-0.000381 0.001446 

0.006198 
0.005489 

2 ! The top line is for the ZE" component while the bottom line is for the Ey component 

mat r ix  is ob t a ined  f rom averaging ca lcula t ions  on the ind iv idua l  componen t s ,  it 
is o f  p a r a m o u n t  impor t ance  in pract ice  that  the c o m p o n e n t  wave funct ions  be 
re la ted  via  a shift  opera to r .  Fo r  example ,  it was specif ied above  that  the CH3 
wave funct ions  compr i s ed  all single and  doub le  exci ta t ions  out  o f  both  com- 
ponents ,  (16) and  (17). This cond i t ion  is sufficient to guaran tee  that  the CI  wave 
funct ions  will be re la ted  via  a shift  opera to r ,  even though  it means  that  single 
and doub le  exci ta t ions  out  o f  reference  conf igura t ions  of  the " w r o n g "  symmet ry  
must  be inc luded .  I f  such exci ta t ions  are exc luded ,  then  the wave funct ions  for  
the  two componen t s  will  not  be re la ted  by  a shift  opera tor .  This makes  it 
imposs ib le ,  for example ,  to impose  f i rs t -order  in teract ing space rest r ic t ions [9] 
on the CI  wave funct ions.  However ,  the symmet r iza t ion  p r o c e d u r e  o f  Eq. (8) 
requires  on ly  one CI  ca lcu la t ion  to be pe r fo rmed ,  and  f i rs t -order  in terac t ing  space 
res t r ic t ions  can be imposed ,  as the symmet r iza t ion  p rocedu re  effectively generates  
the result  of  app ly ing  a shift  ope ra to r  to this CI  wave funct ion.  I t  therefore  
seems p re fe rab le  to symmetr ize  a dens i ty  mat r ix  for  a single c o m p o n e n t  o f  a 
degenera te  state ra ther  than  to average dens i ty  matr ices  for  all componen t s .  

The abi l i ty  to ob ta in  CI  NOs  with full symmet ry  and  equiva lence  p roper t i e s  is 
very impor t an t  for genera t ing  cont rac ted  basis  sets for  mo lecu l a r  ca lcula t ions  
using a tomic  na tura l  orb i ta l s  ( A N O s )  and a genera l  con t rac t ion  scheme [10]. 
Because o f  the shell  s t ructure  exp lo i ted  in efficient in tegral  codes  [11], it is vital  
that  the con t rac ted  basis  d i sp lay  full a tomic  symmet ry  and  equivalence ,  and  it 
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is not always possible to find a suitable non-degenerate state of  a given atom for 
generating such ANOs directly. 

Our computational implementation of Eq. (8) for obtaining symmetry-adapted 
NOs is very simple and we briefly outline it here. We refer to the full symmetry 
it is desired to impose as "high symmetry" and the appropriate subgroup of Dzh 
as "low symmetry".  Required as input is the number  of  high symmetry irreducible 
representations, their degeneracy, and the number  of  orbitals in each irreducible 
representation. Then, for each row of each irreducible representation (/xa), the 
sequence numbers of  the low symmetry orbitals which transform as basis functions 
for /za  are given. The program loops over distinct pairs of irreducible representa- 
t ions/z and u. I f / z  and u are not equal, pp~q,~,b is set to zero. In the case of /z  = u, 
pp~q,Ub is set to zero for all a # b, while for a = b, we average ~a ~a ppq" over all a. 
Diagonalization of p produces NOs with full symmetry and equivalence restric- 
tions. This implementation only requires the identification of the equivalent (high 
symmetry) orbitals in the original orbital list. 

Imposing symmetry and equivalence and restrictions in the NOs in this manner 
is similar to the method used in the SCF Fock matrices, where the equivalent 
blocks are averaged and the off-diagonal elements set to zero. Also this method 
is being used in MCSCF treatments based on NOs and the BLB theorem [12]. 

4. Symmetry and equivalence restrictions in MCSCF calculations 

We now turn to the question of imposing symmetry and equivalence restrictions 
in second-order MCSCF calculations. In most MCSCF methods [13] the variation 
of the MCSCF energy with respect to orbital rotations is written in terms of first 
and second-order reduced density matrices, and the methods of section 2 could 
therefore be used to impose symmetry and equivalence restrictions on the MCSCF 
optimization. It is possible to avoid the more complicated symmetrization of the 
second-order reduced density matrix, however. The MCSCF energy can be 
expanded in the orbital rotations as 

E = E o +  • gnqXpq+�89 5~ Y, Hpq, rsXpqXrs, (19) 
p > q  p > q  r > s  

where E0 is the energy with the current MOs, g is the gradient vector, H is the 
Hessian matrix and the antisymmetric matrix X is used to parametrize the orbital 
rotations. Seeking a stationary point of (19) leads to the Newton-Raphson  
equations 

E Hpq.,sX,, =-g,q. (20) 
r > s  

Symmetry and equivalence properties will be maintained only if the rotations 
are restricted to mix orbitals of  the same symmetry type (that is, if the only 
nonvanishing X,, are those for which r and s transform as basis functions for 
the same row of the same irreducible representation), so this is the condition 
that must be imposed on the Newton-Raphson  equations (20). Labelling the 



Symmetry and equivalence restrictions 71 

symmetry blocks in (20) explicitly, we have 

14 tza.a, vb~b ~ vbvb __ ,u.a,u.a (21) 
E E E - - p q ,  rs - - r s  - -  - - g p q  
u b r>s 

The symmetry structure of  H is clearly much simpler than that of  the second-order 
reduced density matrix in Eq. (12), as the blocks which transform according to 
four different symmetry indices do not appear  in (21). 

For the MCSCF case, our implementation is similar in spirit to that for the 
first-order density matrix; we wish to specify only the number of  high symmetry 
irreducible representations and, for each irreducible representation, its 
degeneracy and the list of  the low symmetry orbitals associated with each of its 
rows/xa. It is obvious that the gradient vector can be symmetrized using exactly 
the same scheme as for the first-order reduced density matrix. For the Hessian, 
it is desirable first to compress the notation somewhat. As we are interested only 
in rotations within symmetries, we can use a single label ~a, and we can represent 
distinct pairs rs by a compound counting index t. The blocks of  X of interest 
are then those with elements X ,  ~a. Given the high symmetry irreducible representa- 
tion and orbital list information, potential orbital mixings which would corre- 
spond to symmetry breaking can be identified. It is now possible to generate a 
list of allowed mixings for each irreducible representation, and to use this rather 
than the list information about the original orbitals. The elements of  the Hessian 
which correspond to a mixing which breaks symmetry are now set to zero 
(excluding diagonal elements which can be set to an arbitrary positive value). 
Note that the elements of  g corresponding to rotations which break the desired 
symmetry are eliminated in the projection of the gradient. The program loops 
over distinct pairs of irreducible representations p. and v. For the case of /x  = v, 
and a = b, the Hessian blocks H,~ a'"a are averaged over all a. This is equivalent 
to the processing of the gradient or first-order reduced density matrix with the 
orbital indices replaced by the compound mixing indices. For a ~ b, the elements 
s txa,~xb 4- [-[ txa'txb ,w - - - w ,  are averaged for each value of t-> w over all a > b. Thus for an 
atom with d orbitals, the ten lower-triangular off-diagonal d - d  blocks and their 
transposes would be averaged. For /x  r v, the elements r4"a'vb -*,w are averaged for 
all a and b. Thus for an atom, fifteen equivalent p - d  blocks would have to be 
averaged. 

In our implementation, we explicitly store the equivalent blocks of  the Hessian, 
thus retaining its original low symmetry dimension. Clearly the dimension of the 
Hessian could be reduced to the unique orbital mixings in the high symmetry. 
However, by retaining the full low symmetry Hessian dimension the program 
modifications are limited to the symmetrization of the Hessian. The described 
method to maintain orbital symmetry and equivalence during MCSCF optimiz- 
ations is similar to that used by Ruedenberg, Cheung and Elbert in the ALIS 
program [12]. 

With the same techniques it is also straightforward to impose symmetry and 
equivalence restrictions in MCSCF calculations which include orbital-CI coup- 
ling: the CI  gradient and CI Hessian can be constructed using one component  
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of a degenerate state, while the CI/orbital  coupling Hessian can be symmetrized 
in the same manner as the orbital gradient. 

This approach can be used to obtain SCF solutions for the d occupations discussed 
in the introduction. For example, for d 3 there are ten determinants with S = Ms = 
3/2, o n e  4Ag and t h r e e  4Big , 4Bzg , a n d  4B3g in D2h symmetry. Optimum SCF 
orbitals for the 4F atomic state can be obtained by performing an MCSCF 
calculation with atomic symmetry and equivalence restrictions imposed, solving 
for any of the seven possible components: 4Ag or the two lowest (degenerate) 
4Big , 4B2g , or  4B3g solutions. All seven solutions will be exactly degenerate and 
will yield identical orbitals. The third root in each of the B symmetries corresponds 
to a component of the d 3 (4p) state. 

It is well known [14] that the orbitals for the lowest state arising from the 3dn4s 2 
and 3dn+14s I occupations in transition metals are very different. Using the 
approach described above, we have recently performed state-averaged CASSCF 
calculations with symmetry and equivalence restrictions for the 3F (3d24s 2) and 
5F (3da4s 1) states of Ti. These CASSCF calculations were followed by CI calcula- 
tions, and the CI first-order density matrices for the two states were averaged. 
Since full symmetry and equivalence restrictions were imposed, these averaged 
NOs can be used to determine an ANO contraction. As discussed by Shavitt [15] 
in his review of configuration interaction methods, averaged NOs are expected 
to be a good way of obtaining an equivalent treatment of two states, and for Ti 
it is found that the average NOs yield a more equivalent description of 3F-SF 
separation than either 3F or 5F orbitals. A [5s4p3dlf] contracted set yields a 
3F-SF separation which agrees to within 0.03 eV with the result obtained using 
the uncontracted (14s 1 lp6d4f) basis set. One example of the need for methods 
for performing beyond-SCF calculations in which symmetry and equivalence 
restrictions are imposed is in the construction of such compact ANO contractions. 

While the ANO contractions are one clear example of the need to impose 
symmetry and equivalence restrictions, it is not always an advantage to use the 
full molecular symmetry. One example would be the distortion away from an 
isolated point of high symmetry where the wave function is degenerate. The 
imposition of symmetry and equivalence at the high symmetry point, but not at 
the lower symmetry geometries could result in a discontinuous potential surface 
- see the discussion by Davidson and Borden [16]. One solution is to state-average 
for the two states, then at the high symmetry point, as discussed above, the density 
matrix has the full high symmetry, and the potential energy surfaces are smooth. 
While we have successfully used this approach in one application, the question 
of symrffetry breaking is very complex and it is not yet clear how general a 
solution state-averaging will be. 

5 .  C o n c l u s i o n s  

We have presented a simple method of modifying a D2h-based MCSCF/CI  
program to obtain full symmetry and equivalence restricted MCSCF solutions 
and CI natural orbitals. Among other advantages, this allows ANO basis sets to 
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be generated using standard program systems, and SCF solutions to be obtained 
for cases where conventional  SCF approaches cannot be used. 
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